Building a machine‐learning model to predict optimal mevalonate pathway gene expression levels for efficient production of a carotenoid in yeast

Author:

Shimazaki Shun1,Yamada Ryosuke1ORCID,Yamamoto Yoshiki1,Matsumoto Takuya1,Ogino Hiroyasu1

Affiliation:

1. Department of Chemical Engineering Osaka Metropolitan University Sakai Osaka Japan

Abstract

AbstractSimultaneous modification of the expression levels of many metabolic enzyme genes results in diverse expression ratios of these genes; however, the relationship between gene expression levels and chemical productivity remains unclear. However, clarification of this relationship is expected to improve the productivity of useful chemicals. Supervised machine learning is considered to be an effective means to clarify this relationship. In this study, to improve the productivity of carotenoids in yeast Saccharomyces cerevisiae, we aimed to build a machine‐learning model that can predict the optimal gene expression level for carotenoid production. First, we obtained data on the expression levels of mevalonate pathway enzyme genes and carotenoid production. Then, based on these data, we built a machine‐learning model to predict carotenoid productivity based on gene expression levels. The prediction accuracy of 0.6292 (coefficient of determination) was achieved using the test data. The maximum predicted carotenoid productivity was 4.3 times higher in the engineered strain than in the parental strain, suggesting that the expression levels of the mevalonate pathway enzyme genes tHMG1 and ERG8 have a particularly large impact on carotenoid productivity. This study could be one of the important achievements in addressing the uncertainty of genotype‐phenotype correlations, which is one of the challenges facing metabolic engineering strategies.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3