Predicting protein retention in ion‐exchange chromatography using an open source QSPR workflow

Author:

Neijenhuis Tim1ORCID,Le Bussy Olivier2,Geldhof Geoffroy2,Klijn Marieke E.1,Ottens Marcel1

Affiliation:

1. Department of Biotechnology Delft University of Technology Delft The Netherlands

2. GSK Technical Research & Development – Microbial Drug Substance Rixensart Belgium

Abstract

AbstractProtein‐based biopharmaceuticals require high purity before final formulation to ensure product safety, making process development time consuming. Implementation of computational approaches at the initial stages of process development offers a significant reduction in development efforts. By preselecting process conditions, experimental screening can be limited to only a subset. One such computational selection approach is the application of Quantitative Structure Property Relationship (QSPR) models that describe the properties exploited during purification. This work presents a novel open‐source Python tool capable of extracting a range of features from protein 3D models on a local computer allowing total transparency of the calculations. As open‐source tool, it also impacts initial investments in constructing a QSPR workflow for protein property prediction for third parties, making it widely applicable within the field of bioprocess development. The focus of current calculated molecular features is projection onto the protein surface by constructing surface grid representations. Linear regression models were trained with the calculated features to predict chromatographic retention times/volumes. Model validation shows a high accuracy for anion and cation exchange chromatography data (cross‐validated R2 of 0.87 and 0.95). Hence, these models demonstrate the potential of the use of QSPR to accelerate process design.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3