Adaptive laboratory evolution and transcriptomics‐guided engineering of Escherichia coli for increased isobutanol tolerance

Author:

Jang Young Seo1,Yang Jungwoo1,Kim Jae Kyun1,Kim Tae In1,Park Yong‐Cheol2ORCID,Kim In Jung3,Kim Kyoung Heon1ORCID

Affiliation:

1. Department of Biotechnology, Graduate School Korea University Seoul Republic of Korea

2. Department of Bio and Fermentation Convergence Technology Kookmin University Seoul Republic of Korea

3. Department of Food Science and Technology Institute of Agriculture and Life Science Gyeongsang National University Jinju Republic of Korea

Abstract

AbstractAs a renewable energy from biomass, isobutanol is considered as a promising alternative to fossil fuels. To biotechnologically produce isobutanol, strain development using industrial microbial hosts, such as Escherichia coli, has been conducted by introducing a heterologous isobutanol synthetic pathway. However, the toxicity of produced isobutanol inhibits cell growth, thereby restricting improvements in isobutanol titer, yield, and productivity. Therefore, the development of robust microbial strains tolerant to isobutanol is required. In this study, isobutanol‐tolerant mutants were isolated from two E. coli parental strains, E. coli BL21(DE3) and MG1655(DE3), through adaptive laboratory evolution (ALE) under high isobutanol concentrations. Subsequently, 16 putative genes responsible for isobutanol tolerance were identified by transcriptomic analysis. When overexpressed in E. coli, four genes (fadB, dppC, acs, and csiD) conferred isobutanol tolerance. A fermentation study with a reverse engineered isobutanol‐producing E. coli JK209 strain showed that fadB or dppC overexpression improved isobutanol titers by 1.5 times, compared to the control strain. Through coupling adaptive evolution with transcriptomic analysis, new genetic targets utilizable were identified as the basis for the development of an isobutanol‐tolerant strain. Thus, these new findings will be helpful not only for a fundamental understanding of microbial isobutanol tolerance but also for facilitating industrially feasible isobutanol production.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3