Development and validation of CYP26A1 inhibition assay for high‐throughput screening

Author:

Sakamuru Srilatha1,Ma Dongping2,Pierro Jocylin D.3,Baker Nancy C.4,Kleinstreuer Nicole5,Cali James J.2,Knudsen Thomas B.3,Xia Menghang1ORCID

Affiliation:

1. Division of Pre‐clinical Innovation National Center for Advancing Translational Sciences National Institutes of Health Rockville Maryland USA

2. Promega Corporation Madison Wisconsin USA

3. Center for Computational Toxicology and Exposure Office of Research and Development, United States Environmental Protection Agency Research Triangle Park North Carolina USA

4. Leidos Research Triangle Park North Carolina USA

5. National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods National Institute of Environmental Health Sciences, National Institutes of Health Research Triangle Park North Carolina USA

Abstract

AbstractAll‐trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell‐free system using a luminescent P450‐Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z‐factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3