Toehold switch plus signal amplification enables rapid detection

Author:

Morey Kevin1,Thomas‐Fenderson Tyler2,Watson Al1,Sebesta Jacob1,Peebles Christie1,Gentry‐Weeks Claudia2

Affiliation:

1. Chemical and Biological Engineering Department Colorado State University Fort Collins Colorado USA

2. Microbiology, Immunology, and Pathology Department Colorado State University Fort Collins Colorado USA

Abstract

AbstractRecent world events have led to an increased interest in developing rapid and inexpensive clinical diagnostic platforms for viral detection. Here, the development of a cell‐free toehold switch‐based biosensor, which does not require upstream amplification of target RNA, is described for the detection of RNA viruses. Toehold switches were designed to avoid interfering secondary structure in the viral RNA binding region, mutational hotspots, and cross‐reacting sequences of other coronaviruses. Using these design criteria, toehold switches were targeted to a low mutation region of the SARS‐CoV‐2 genome nonstructural protein 2 (nsp2). The designs were tested in a cell‐free system using trigger RNA based on the viral genome and a highly sensitive fluorescent reporter gene, mNeonGreen. The detection sensitivity of our best toehold design, CSU 08, was in the low picomolar range of target (trigger) RNA. To increase the sensitivity of our cell‐free biosensor to a clinically relevant level, we developed a modular downstream amplification system that utilizes toehold switch activation of tobacco etch virus (TEV) protease expression. The TEV protease cleaves a quenched fluorescent reporter, both increasing the signal fold change between control and sample and increasing the sensitivity to a clinically relevant low femtomolar range for target RNA detection.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3