Bicarbonate concentration influences carbon utilization rates and biochemical profiles of freshwater and marine microalgae

Author:

Kusi Philip Asare1,McGee Donal2,Tabraiz Shamas13,Ahmed Asma14ORCID

Affiliation:

1. Section of Natural and Applied Sciences Canterbury Christ Church University Canterbury UK

2. AlgaeCytes Ltd. Sandwich UK

3. Department of Civil & Environmental Engineering Imperial College London London UK

4. Department of Chemical and Environmental Engineering University of Nottingham Nottingham UK

Abstract

AbstractSelecting the optimal microalgal strain for carbon capture and biomass production is crucial for ensuring the commercial viability of microalgae‐based biorefinery processes. This study aimed to evaluate the impact of varying bicarbonate concentrations on the growth rates, inorganic carbon (IC) utilization, and biochemical composition of three freshwater and two marine microalgal species. Parachlorella kessleri, Vischeria cf. stellata, and Porphyridium purpureum achieved the highest carbon removal efficiency (>85%) and biomass production at 6 g L−1 sodium bicarbonate (NaHCO3), while Phaeodactylum tricornutum showed optimal performance at 1 g L−1 NaHCO3. The growth and carbon removal rate of Scenedesmus quadricauda increased with increasing NaHCO3 concentrations, although its highest carbon removal efficiency (∼70%) was lower than the other species. Varying NaHCO3 levels significantly impacted the biochemical composition of P. kessleri, S. quadricauda, and P. purpureum but did not affect the composition of the remaining species. The fatty acid profiles of the microalgae were dominated by C16 and C18 fatty acids, with P. purpureum and P. tricornutum yielding relatively high polyunsaturated fatty acid content ranging between 14% and 30%. Furthermore, bicarbonate concentration had a species‐specific effect on the fatty acid and chlorophyll‐a content. This study demonstrates the potential of bicarbonate as an effective IC source for microalgal cultivation, highlighting its ability to select microalgal species for various applications based on their carbon capture efficiency and biochemical composition.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3