Phase separation methods for protein purification: A meta‐analysis of purification performance and cost‐effectiveness

Author:

Decker John S.1,Yano Utsuki2,Melgar Romel Menacho1,Lynch Michael D.12ORCID

Affiliation:

1. Department of Biomedical Engineering Duke University Durham North Carolina USA

2. Department of Chemistry Duke University Durham North Carolina USA

Abstract

AbstractProtein purifications based on phase separations (e.g., precipitation and liquid‐liquid extraction) have seen little adoption in commercial protein drug production. To identify barriers, we analyzed the purification performance and economics of 290 phase separation purifications from 168 publications. First, we found that studies using Design of Experiments for optimization achieved significantly greater mean yield and host cell protein log10 removal values than those optimizing one factor at a time (11.5% and 53% increases, respectively). Second, by modeling each reported purification at scales from 10 to 10,000 kg product/year and comparing its cost‐effectiveness versus chromatography, we found that cost‐effectiveness depends strongly on scale: the fraction of phase separations predicted to be cost‐effective at the 10, 100, and 1000 kg/year scales was 8%, 15%, and 43%, respectively. Total cost per unit product depends inversely on input purity, with phase separation being cheaper than chromatography at the 100 kg/year scale in 100% of cases where input purity was ≤ 1%, compared to about 25% of cases in the dataset as a whole. Finally, we identified a simple factor that strongly predicts phase separation process costs: the mass ratio of reagents versus purified product (the “direct materials usage rate”), which explains up to 58% of variation in cost per unit of purified product among all 290 reports, and up to 98% of variation within particular types of phase separation.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3