A machine learning‐based approach for improving plasmid DNA production in Escherichia coli fed‐batch fermentations

Author:

Xu Zhixian1ORCID,Zhu Xiaofeng1,Mohsin Ali1,Guo Jianfei1,Zhuang Yingping1,Chu Ju1ORCID,Guo Meijin1ORCID,Wang Guan1ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering East China University of Science and Technology (ECUST) Shanghai People's Republic of China

Abstract

AbstractArtificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi‐parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on‐line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L−1 and 8.87 mg L−1/OD600 were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one‐step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self‐optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.

Funder

National Key Research and Development Program of China

Shanghai Rising-Star Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3