In vitro evolution of diagnostic antibodies targeting native antigens in plasma by sandwich flow cytometry

Author:

Liang Mingxia12,Ran Fanlei12,Li Li3,Hang Haiying12,An Lili1ORCID

Affiliation:

1. Key Laboratory of Protein and Peptide Drugs National Laboratory of Biomacromolecules Institute of Biophysics Chinese Academy of Sciences Beijing Beijing China

2. University of Chinese Academy of Sciences Beijing Beijing China

3. The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China

Abstract

AbstractMonoclonal antibodies (mAbs) that recognize and bind to specific antigens (Ags) have a wide range of applications in research, therapy, and diagnostics. However, many of these antibodies cannot bind well to the native Ags. In this study, based on the Chinese hamster ovary (CHO) cell display platform developed previously in our lab, we reported a novel artificial evolution procedure to improve the affinity of mAb against the native Ag directly using the plasma samples without purification of the native Ag. In this procedure, a pair of antibodies able to bind the Ag in sandwich manner are first confirmed (Ab1/Ab2) and the antibody (Ab) to be affinity‐improved (Ab1) is displayed on CHO cells for Ab mutation. Then the cells were detected and sorted with flow cytometry in the form of Ab1‐Ag‐fluorescence labeled Ab2, which we named sandwich flow cytometry. Here, we used soluble isoform of suppression of tumorigenicity 2 (sST2) protein as model Ag, carried out “sandwich” maturation directly using the plasma samples containing the native sST2 protein and optimized a pair of antibodies with significantly improved sensitivity in the detection of the native sST2 in plasma. This method could be very useful in optimization of the diagnostic Ab pairs working in a “sandwich” manner if more antibodies were also successfully affinity‐matured with this method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3