A generic pump‐free organ‐on‐a‐chip platform for assessment of intestinal drug absorption

Author:

Guo Yaqiong1,Xie Yingying12,Qin Jianhua12345ORCID

Affiliation:

1. Division of Biotechnology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China

2. University of Chinese Academy of Sciences Beijing China

3. Beijing Institute for Stem Cell and Regenerative Medicine Chinese Academy of Sciences Beijing China

4. University of Science and Technology of China Hefei China

5. Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou China

Abstract

AbstractOrgan‐on‐a‐chip technology has shown great potential in disease modeling and drug evaluation. However, traditional organ‐on‐a‐chip devices are mostly pump‐dependent with low throughput, which makes it difficult to leverage their advantages. In this study, we have developed a generic, pump‐free organ‐on‐a‐chip platform consisting of a 32‐unit chip and an adjustable rocker, facilitating high‐throughput dynamic cell culture with straightforward operation. By utilizing the rocker to induce periodic fluid forces, we can achieve fluidic conditions similar to those obtained with traditional pump‐based systems. Through constructing a gut‐on‐a‐chip model, we observed remarkable enhancements in the expression of barrier‐associated proteins and the spatial distribution of differentiated intestinal cells compared to static culture. Furthermore, RNA sequencing analysis unveiled enriched pathways associated with cell proliferation, lipid transport, and drug metabolism, indicating the ability of the platform to mimic critical physiological processes. Additionally, we tested seven drugs that represent a range of high, medium, and low in vivo permeability using this model and found a strong correlation between their Papp values and human Fa, demonstrating the capability of this model for drug absorption evaluation. Our findings highlight the potential of this pump‐free organ‐on‐a‐chip platform as a valuable tool for advancing drug development and enabling personalized medicine.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Yunnan Key Research and Development Program

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3