Evaluation of the cytotoxic activity of sorafenib‐loaded camel milk casein nanoparticles against hepatocarcinoma cells

Author:

Mittal Aastha1ORCID,Mahala Neelam12,Dhanawade Nikhil Hanamant1,Dubey Sunil Kumar3,Dubey Uma S.1ORCID

Affiliation:

1. Department of Biological Sciences Birla Institute of Technology of Science (BITS), Pilani Campus Pilani Rajasthan India

2. Department of Biotechnology Parul Institute of Technology, Parul University Vadodara Gujarat India

3. R & D Healthcare Division Emami Ltd Kolkata India

Abstract

AbstractSorafenib, a multikinase inhibitor is used to treat hepatocellular and renal carcinoma. However, a low solubility impedes its bioavailability and thus, effectiveness. This study aims to enhance its effectiveness by using novel camel milk casein nanoparticles as a delivery system. This study evaluates the cytotoxicity of sorafenib encapsulated in camel milk casein nanoparticles against human hepatocarcinoma cells (HepG2 cells) in vitro. Optimal drug loaded nanoparticles were stable for 1 month, had encapsulation efficiency of 96%, exhibited a particle size of 230 nm, zeta potential of −14.4 and poly disparity index of 0.261. Treatment with it led to cell morphology and DNA fragmentation as a characteristic of apoptosis. Flow cytometry showed G1 phase arrest of cell cycle and 26% increased apoptotic cells population upon treatment as compared to control. Sorafenib‐loaded casein nanoparticles showed 6‐fold increased ROS production in HepG2 cells as compared to 4‐fold increase shown by the free drug. Gene and protein expression studies done by qPCR and western blotting depicted upregulation of tumor suppressor gene p53, pro‐apoptotic Bax, and caspase‐3 along with downregulated anti‐apoptotic Bcl‐2 gene and protein expression which further emphasized death by apoptosis. It is concluded regarding the feasibility of these casein nanoparticles as a delivery system with enhanced therapeutic outcomes against hepatocellular carcinoma cells.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3