Modified SnO2 Electron Transport Layer by One‐Step Doping with Histidine in Perovskite Solar Cells

Author:

Dai Mengjie1,Xing Wenchao1,Zhang Yinfeng1,Zhang Lun1,Niu Pujun1,Wen Ziying1,Shan Shengquan1,Lyu Mei123ORCID,Zhu Jun12ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China

2. Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument Anhui Province Key Laboratory of Measuring Theory and Precision Instrument School of Instrument Science and Opto‐Electronics Engineering Hefei University of Technology Hefei 230009 China

3. Postdoctoral Workstation AnHui SunWay Cable Co., Ltd. No. 18, Gaoxin Avenue, Gaogou Industrial District Wuwei 238339 Anhui China

Abstract

Tin dioxide (SnO2), one of the best electron transport layer materials for perovskite solar cells (PSCs), has high electrical conductivity and low photocatalytic activity. However, the defects in its inside and surface result in nonradiative recombination at the SnO2/perovskite interface. Complex and time‐consuming passivation methods are not conducive to the commercialization of PSCs, and simple passivation strategies should be used to improve the photovoltaic performance of the devices. Herein, a facile and efficient method is proposed to simultaneously passivate the inside and surface defects by adding histidine (HIS) to SnO2 colloidal solution. This one‐step doping strategy also modulates carrier dynamics at the SnO2/perovskite interface. HIS reduces suspended hydroxyl groups, oxygen vacancies, and uncoordinated Sn4+ defects on the surface of SnO2, as well as uncoordinated Pb2+ and halogen vacancy defects at the buried interface of perovskite. Surprisingly, HIS can prevent perovskite from decomposition to form PbI2, which further decomposes to photoactive metallic Pb0 and I, causing ion migration in PSC. As a result, the PSC efficiency has significantly improved 23.11% after HIS doping. The efficiency of unencapsulated device with HIS is 94% of the primary efficiency after storage in relative humidity = 70 ± 5% for 1000 h.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3