Metal‐Organic Chemical Vapor Deposition Regrowth of Highly Doped n+ (In)GaN Source/Drain Layers for Radio Frequency Transistors

Author:

Banerjee Sourish1ORCID,Peralagu Uthayasankaran1ORCID,Alian Alireza1ORCID,Zhao Ming1,Hahn Herwig2ORCID,Minj Albert1ORCID,Vanhove Benjamin1,Vohra Anurag1ORCID,Parvais Bertrand13ORCID,Langer Robert1,Collaert Nadine13ORCID

Affiliation:

1. imec Kapeldreef 75 3001 Leuven Belgium

2. AIXTRON SE D‐52134 Herzogenrath Germany

3. Department of Electronics and Informatics (ETRO) Vrije Universiteit Brussel Pleinlaan 2 B‐1050 Brussel Belgium

Abstract

Herein, epitaxially regrown n+ (In)GaN source/drain layers for radio frequency high electron mobility transistors, addressing material and electrical characterization, are reported. A range of n+ GaN and n+ InGaN layers with indium 4–12 at% and silicon 0–5.1 × 1020 cm−3 are evaluated. The active carrier concentration in n+ InGaN exceeds 2 × 1020 cm−3. The layers exhibit so‐called V‐defects, observed by atomic force microscope and transmission electron microscope (TEM), which are associated with local composition changes. In addition to the high Si doping levels, nitrogen vacancies are also considered to contribute toward their net carrier concentration. Due to its relevance for device processing, selectivity analysis is performed, and the optimal process conditions for selective regrowth are identified. Regrowth under high temperature (800 °C) is found to be conducive to improved selectivity. However, a high thermal budget negatively impacts the overall regrowth process, as reported here for In0.17Al0.83N and Al0.26Ga0.74N barriers: whereas the InAlN barrier suffers from intermixing, the AlGaN barrier demonstrates high‐temperature stability. The impact of intermixing is studied from complementary TEM and DC electrical measurements. A low overall contact resistance of 75 Ω μm is obtained with the regrown n+ InGaN layers.

Publisher

Wiley

Reference57 articles.

1. B.Parvais A.Alian U.Peralagu R.Rodriguez S.Yadav A.Khaled R. Y.ElKashlan V.Putcha A.Sibaja‐Hernandez M.Zhao P.Wambacq N.Collaert N.Waldron presented atIEEE Int. Electron Devices Meeting San Francisco 2020 p.6.

2. H.‐W.Then S.Dasgupta M.Radosavljevic P.Agababov I.Ban R.Bristol M.Chandhok S.Chouksey B.Holybee C. Y.Huang B.Krist K.Jun K.Lin N.Nidhi T.Michaelos B.Mueller R.Paul J.Peck W.Rachmady D.Staines T.Talukdar N.Thomas T.Tronic P.Fischer WalidHafez presented atIEEE Int. Electron Devices Meeting San Francisco 2019 p.12.

3. U.Peralagu A.Alian V.Putcha A.Khaled R.Rodriguez A.Sibaja‐Hernandez S.Chang E.Simoen S. E.Zhao B.De Jaeger D. M.Fleetwood P.Wambacq M.Zhao B.Parvais N.Waldron N.Collaert presented atIEEE Int. Electron Devices Meeting San Francisco 2019 p.17.

4. K.Shinohara D.Regan A.Corrion D.Brown Y.Tang J.Wong G.Candia A.Schmitz H.Fung S.Kim M.Micovic presented atIEEE Int. Electron Devices Meeting San Francisco 2012 p.21.

5. Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3