Influence of New Glass Phase Structure on the Mechanical Properties of Composite Ceramic SiC/Si3N4

Author:

Wang Qiang12ORCID,Zhou Cunlong12ORCID,Yang Chao12

Affiliation:

1. College of Mechanical Engineering Taiyuan University of Science and Technology Taiyuan 030024 China

2. Shan Xi Provincial Key Laboratory of Metallurgical Device DesignTheory and Technology Taiyuan University of Science and Technology Taiyuan 030024 China

Abstract

Though the addition of a second phase is an effective method for toughening silicon nitride (Si3N4) ceramics, certain residual thermal stress is generated at the phase interface. In case of a large value of residual thermal stress, a weak interface forms between the second phase and the matrix material, reducing the strength of the material. Herein, a new type of core–shell structure silicon carbide SiC–glass phase is produced inside the material by adding a presintering process into the traditional SiC–Si3N4 sintering process. The radial and tangential thermal stresses around the core–shell structural SiC–glass phase and SiC particle are compared by using the finite element method. The results indicate that the core–shell structural SiC–glass phase inhibits the interfacial debonding. Compared with the introduction of SiC particle alone, the core–shell structural SiC–glass phase optimizes the mechanical properties of SiC/Si3N4 composite ceramic, with the fracture toughness reduced by 9.6%, the bending strength increased by 12.3%, and the friction coefficient reduced by 8.5% for the SiC/Si3N4 ceramics with SiC content of 5%.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3