Responsivity Enhancement of Wafer‐Bonded In0.53Ga0.47As Photo‐Field‐Effect Transistor on Si Substrate via Equivalent Oxide Thickness Scaling

Author:

Jeon Sung‐Han12,Ahn Dae‐Hwan1,Ko Kyul1,Choi Won Jun1,Song Jin‐Dong1,Choi Woo‐Young2ORCID,Han Jae‐Hoon1ORCID

Affiliation:

1. Center for Opto‐Electronic Materials and Devices Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

2. Department of Electrical and Electronic Engineering Yonsei University Seoul 03722 Korea

Abstract

A high‐responsivity photo‐field‐effect transistor (photo‐FET) with a metal‐oxide‐semiconductor (MOS) structure is a promising technology for low‐intensity light detection with its high gain and low operation voltage. To enhance their responsivity, the equivalent oxide thickness (EOT) scaling is one of the effective solutions, which is a common technology to improve the electrical properties of MOSFETs using higher‐k insulators. Herein, the EOT scaling effect on the optoelectrical characteristics of photo‐FETs using Al2O3 and Al2O3/HfO2 gate stacks is investigated. Thanks to the EOT scaling effect introducing Al2O3/HfO2, only the transconductance of the photo‐FET is enhanced without any significant change in the photovoltaic effect and cavity effect. As a result, its responsivity is improved by up to 1.7 times. The results give a basic strategy of the EOT scaling effect for photo‐FETs; thus, the EOT scaling with a higher‐k insulator is a powerful solution for the high‐performance InGaAs photo‐FET requiring high responsivity in the short‐wavelength infrared range.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Korea Institute of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3