Optimization of the Al Composition of the p‐AlGaN Electron Blocking Layer in GaInN/GaN Multiquantum‐Shell Nanowire LEDs

Author:

Hattori Yuta1ORCID,Lu Weifang2ORCID,Inaba Soma1,Shima Ayaka1,Ii Shiori1,Takahashi Mizuki1,Yamanaka Yuki1,Kubota Kosei1,Kamiyama Satoshi1ORCID,Takeuchi Tetsuya1,Iwaya Motoaki1ORCID

Affiliation:

1. Department of Materials Science and Engineering Meijo University 1–501 Shiogamaguchi, Tenpaku‐ku Nagoya 468‐8502 Japan

2. Fujian Key Laboratory of Semiconductor Materials and Applications, CI‐Center for OSED Department of Physics Xiamen University Xiamen China

Abstract

The aim is to develop highly efficient GaInN/GaN nanowire (NW)‐based light‐emitting diodes (LEDs), which are composed of GaN NWs and multiquantum shell (MQS) active regions. These regions incorporate the polar c‐plane, nonpolar r‐plane, and semipolar m‐plane. A challenge with MQS‐LEDs is that the current path through the c‐plane MQS tends to dominate under low‐current injection conditions. Given that the MQS on the c‐plane is very defective, this injection current is mainly subjected to nonradiative recombination. Therefore, this study explores various optimizations of the p‐AlGaN electron blocking layers (EBLs) to minimize the current injection into the MQS in the c‐plane region. The samples are subsequently grown using a specific process. This involves n‐GaN NWs, GaInN/GaN‐based quantum shells, p‐AlGaN EBLs with different Al compositions, and p‐GaN shells. All these are developed by metal–organic vapor phase epitaxy on an n‐GaN template featuring a SiO2 hole pattern. NW LEDs are fabricated and subsequently their device characteristics are investigated. Under low‐current injection, the sample with a lower Al composition exhibits higher luminescence intensity. However, this trend reverses when the injection current increases. The findings suggest that AI composition and thickness in the p‐AlGaN EBL significantly affect the output power and the emission wavelength.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3