Absorption Properties of a One‐Dimensional Photonic Crystal with a Defect Layer Composed of a Left‐Handed Metamaterial and Two Monolayer Graphene

Author:

Taya Sofyan A.1ORCID,Daher Malek G.1,Almawgani Abdulkarem H. M.2,Hindi Ayman Taher2,Colak Ilhami3,Patel Shobhit K.4,Pal Amrindra5

Affiliation:

1. Physics Department Islamic University of Gaza P.O. Box 108 Gaza Palestine

2. Electrical Engineering Department College of Engineering Najran University Najran Kingdom of Saudi Arabia

3. Department of Electrical and Electronics Engineering Nisantasi University Istanbul Turkey

4. Department of Computer Engineering Marwadi University Rajkot 360003 India

5. Department of ECE DIT University Dehradun 248009 India

Abstract

To construct photodetector and photovoltaic devices, light absorption is crucial. Herein, the absorption properties of a photonic crystal (PhC) consisting of high‐ and low‐index dielectric materials and a metamaterial defect layer are investigated. Two graphene sheets are assumed to surround the metamaterial layer. The study is theoretically investigated and numerically simulated in the gigahertz region. The metamaterial negative permittivity and permeability are assumed to follow the Drude model. The number of unit cells, graphene chemical potential (GCP), graphene phenomenological scattering rate (GPSR), and the metamaterial layer thickness are varied to examine the PhC tunable absorption properties. The following points are demonstrated: 1) the number of absorbance peaks increases as the number of unit cells increases; 2) when the GCP increases, the absorbance peaks dramatically decay; 3) the number of absorbance peaks in the absorption spectrum is independent of the GCP and GPSR; and 4) the absorbance peaks exhibit a significant enhancement with increasing GPSR. The proposed PhC can be used to design optical devices based on graphene and metamaterials, such as sensors, filters, and absorbers in the GHz range.

Funder

Najran University

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3