Affiliation:
1. Electrochemistry for Energy and Environment Group Research Focus Area: Chemical Resource Beneficiation (CRB) North-West University Potchefstroom 2531 South Africa
2. Department of Physics University of Johannesburg PO Box 524 Auckland Park 2006 South Africa
Abstract
Herein, the photoelectrocatalytic and photocharging activity of a Ni3TeO6 (NTO‐700) photoelectrocatalyst for water oxidation in alkaline medium is demonstrated and calcined at 700 °C. The photoelectrocatalytic (PEC) activity of the sample is increased upon an increase in the illumination time. With a twofold increase in photocurrent density at 1.8 V, the PEC 150 sample (having been illuminated for 150 min) attained the highest PEC activity. The synthesized material has displayed an excellent charge storage capacity in KOH and Na2SO4 electrolyte solutions (both 0.1 m). The chrono‐amperometry measurement, subsequent to light interruption, has sustained almost 44% higher current density (even after 200 min) compared to the pure electrocatalytic baseline in a Na2SO4 electrolyte. The charge transfer resistance, Rct, decreases from 633.40 to 170.40 Ω, while the charge transfer rate constant, kct, increases from 7.93 to 27.03 s−1, as a function of illumination time. This points to fast separation of electron–hole (e−–h+) pairs and a slower recombination rate. The lower values of the charge transfer resistance and the time constant recorded for the light interrupted samples, as compared to the electrochemical sample, are attributed to the stored charge that drives water oxidation at a higher rate.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献