Ultrafast Laser Hyperdoped Black Silicon and Its Application in Photodetectors: A Review

Author:

Huang Song12ORCID,Jin Xiaorong3,Wu Qiang2ORCID,Song Guanting2,Cao Jiaxin2,Zhou Xu2,Jiang Haonan2,Gao Weiqing1,Xu Jingjun2

Affiliation:

1. Department of Optical Engineering, School of Physics Hefei University of Technology Hefei 230601 China

2. Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics Nankai University Tianjin 300457 China

3. Department of Physics, School of Science Tianjin Chengjian University Tianjin 300384 China

Abstract

Based on the ultrafast and extremely strong interaction between laser pulses and materials, ultrafast laser irradiation can break the solid solubility constraints and enable hyperdoping of impurities. This process overcomes the bandgap constraints of crystalline silicon, resulting in heightened absorption across a broad spectral range spanning from ultraviolet to infrared wavelengths, therefore commonly referred to as black silicon (b‐Si). The b‐Si demonstrates significant changes in optoelectronic properties, making it highly promising for applications in silicon photonics. Specifically, b‐Si photodetectors exhibit distinct advantages in terms of high photoelectric gain at low voltage, ultrabroadband spectral responsivity, large dynamic range, and suitability for operation over a wide temperature range. These properties address the limitations of traditional silicon photodetectors, showcasing great potential for applications in optoelectronic integration, artificial intelligence, information technology, energy devices, and beyond. This review focuses on b‐Si achieved through ultrafast laser processing, with a special emphasis on its applications in photodetectors. The mechanism of ultrafast laser irradiation and the properties of hyperdoped silicon are discussed. Then, the research progresses and state‐of‐the‐art b‐Si photodetectors are introduced, as well as working mechanism and potential application expansion. Finally, the development prospects of b‐Si photodetectors based on ultrafast laser hyperdoping are predicted.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3