Affiliation:
1. Department of Optical Engineering, School of Physics Hefei University of Technology Hefei 230601 China
2. Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics Nankai University Tianjin 300457 China
3. Department of Physics, School of Science Tianjin Chengjian University Tianjin 300384 China
Abstract
Based on the ultrafast and extremely strong interaction between laser pulses and materials, ultrafast laser irradiation can break the solid solubility constraints and enable hyperdoping of impurities. This process overcomes the bandgap constraints of crystalline silicon, resulting in heightened absorption across a broad spectral range spanning from ultraviolet to infrared wavelengths, therefore commonly referred to as black silicon (b‐Si). The b‐Si demonstrates significant changes in optoelectronic properties, making it highly promising for applications in silicon photonics. Specifically, b‐Si photodetectors exhibit distinct advantages in terms of high photoelectric gain at low voltage, ultrabroadband spectral responsivity, large dynamic range, and suitability for operation over a wide temperature range. These properties address the limitations of traditional silicon photodetectors, showcasing great potential for applications in optoelectronic integration, artificial intelligence, information technology, energy devices, and beyond. This review focuses on b‐Si achieved through ultrafast laser processing, with a special emphasis on its applications in photodetectors. The mechanism of ultrafast laser irradiation and the properties of hyperdoped silicon are discussed. Then, the research progresses and state‐of‐the‐art b‐Si photodetectors are introduced, as well as working mechanism and potential application expansion. Finally, the development prospects of b‐Si photodetectors based on ultrafast laser hyperdoping are predicted.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province