Affiliation:
1. Center for Magnetic Materials and Devices Qujing Normal University Qujing 655011 China
2. College of Physics and Electronic Engineering Qujing Normal University Qujing 655011 China
3. College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 China
Abstract
The influence of Cu doping on phase transition, thermal strain, and thermal expansion property of polycrystalline Ni50Mn23−xCuxGa27(x = 1, 3, 5, 6 and 7) alloys is investigated. The results show that with increasing Cu concentration, martensitic transformation gradually gets close to Curie transition. A magnetostructural transition (MST) is observed in samples with x = 6 and 7. Such MST can enhance magnitude of transformation strain. Besides, Ni50Mn23−xCuxGa27 alloys possess an isotropic, recoverable, and thermally stable thermal strain. Excitedly, Cu doping can effectively tune the phase transition, thermal strain, and thermal expansion properties of Ni50Mn23−xCuxGa27 alloys. Adjustable coefficients of thermal expansion from positive to negative are obtained by Cu‐doped Ni50Mn23−xCuxGa27 alloys. The average linear expansion coefficient (α) between −140.44 and −207.70 ppm K−1 is observed in samples with x = 6 and 7 for a narrow temperature span of 11–14 K. When the temperature span is about 72 K (x = 6) and 73 K (x = 7), which is the largest temperature span observed in Ni–Mn–Ga‐based alloys recently, the α values decrease to about −36 ppm K−1. These findings are beneficial for manipulating the thermal expansion property of Ni–Mn–Ga–Cu alloys and their multifunctional applications.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials