Affiliation:
1. Power Electronics and Advanced Materials Branch United States Naval Research Laboratory Washington DC 20375 USA
2. Materials Science and Engineering Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA
Abstract
Codoping of gallium nitride for improved acceptor ionization has long been theorized; however, reduction to practice proves difficult via growth. Herein, implementation of codoping via ion implantation and symmetric multicycle rapid thermal annealing utilizing magnesium codoped with silicon or oxygen is demonstrated. Results show enhanced photoluminescence with both donor species but with an order of magnitude greater increase with concurrent p‐type hall for codoping with oxygen. Furthermore, the addition of nitrogen to balance stoichiometry suppresses defect photoluminescence signals. The incorporation of the donor and nitrogen demonstrates defect reduction beyond magnesium, only implants despite the additional implant dose and resultant damage with coimplantation. The enhanced hole concentrations evident with oxygen incorporation reveal important considerations for device design given unintentional doping during growth and future incorporation of ion implantation capabilities.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献