Piezoresistive Performance of a Compliant Scalable Sensor Made of Low‐Cost Exfoliated Graphite Polymer Composites

Author:

Chen Ying1ORCID,Wang Peng1ORCID,Xie Ruishan1ORCID,Jin Leizhi1ORCID,Liu Haibin1ORCID

Affiliation:

1. Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China

Abstract

Compliant sensors have drawn considerable interests in human–robot interactions. However, it is still challenging to obtain reliable and reproducible performance at reduced costs, especially for scaled‐up sensing applications. This work investigates the piezoresistive performance of a low‐cost, scalable sensor, which is made by spray coating exfoliated graphite natural rubber latex composites (EG/latex) over an elastomeric substrate. The EG/latex sensor provides a uniform distribution in the sheet resistance (variation below 4%) over a large 10 cm × 10 cm area. The stabilized piezoresistive response under cyclic tests is found highly related to both the filler concentration and the strain region. The 8 wt% and the 10 wt% sensors show nonlinear piezoresistive response, while the 25 wt% sensor exhibits the best linearity with a high gauge factor (7.6) and the lowest hysteresis (0.043) under a maximum strain of 60%. The distinct piezoresistive behavior is found attributed to the different levels of microbreakage under the applied strain. Scalable sensing performance is demonstrated on a hand‐size glove spray‐coated with 25 wt% EG/latex. Effective localization of contacts over the continuous sensing glove is achieved via the technique of electrical impedance tomography, validating the potential of the cost‐competitive EG/latex sensor for scalable sensing applications.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing University of Technology

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3