Active Terahertz Metamaterials Integrated with Metal–Semiconductor–Metal Varactor Diodes for Amplitude Modulation

Author:

Lee Gyejung12ORCID,Hwang Ji Hyun3,Jang Jae‐Hyung1ORCID

Affiliation:

1. Department of Energy Engineering KENTECH Institute of Energy Materials and Devices Korea Institute of Energy Technology Naju 58217 Republic of Korea

2. School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea

3. Department of DRAM Development SK Hynix Inc. Icheon 17336 Republic of Korea

Abstract

Metal–semiconductor–metal (MSM) varactor diodes are integrated with a THz fishnet metamaterial with its resonance frequency in the terahertz (THz) frequency range. The electrically tunable capacitance enabled by MSM varactor diodes can shift the resonance frequency of the THz fishnet metamaterial and modulate the amplitude of transmitted THz waves. Conventional MSM varactor diodes can be represented by an equivalent circuit consisting of the series‐connected resistance and capacitance. When the frequency increases, the kinetic inductance associated with the two‐dimensional electron gas (2DEG) becomes significant in the THz frequency range. A very large resonance frequency shift as large as 0.57 THz is obtained due to the effect of the kinetic inductance change as well as the capacitance change in the THz metamaterial based on the fishnet structures. The fabricated THz fishnet metamaterial integrated with the MSM‐2DEG varactor diodes exhibits a modulation depth of 54.7% and an insertion loss of 3.32 dB at 0.66 THz.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3