Double‐Absorber CZTS/Sb2Se3 Architecture for High‐Efficiency Solar‐Cell Devices

Author:

Kumar Atul1ORCID,Sujith M.2,Valarmathi K.3,Kumar Rajnish4,Al-Asbahi Bandar Ali5,Ahmed Abdullah Ahmed Ali6

Affiliation:

1. Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram Guntur Andhra Pradesh 522502 India

2. Department of Electrical Engineering Sanjivani College of Engineering Maharashtra 423603 India

3. School of Computer Science and Engineering Vellore Institute of Technology Chennai 600127 India

4. Department of Physics College of Commerce, Arts and Science Patliputra University Patna Bihar 800020 India

5. Department of Physics & Astronomy College of Science King Saudi University Riyadh 11451 Saudi Arabia

6. Center for Hybrid Nanostructures (CHyN) and Fachbereich Physik Universität Hamburg 20146 Hamburg Germany

Abstract

The design and configuration of solar cells are critical for photovoltaic action and achieving high efficiency. Herein, the double‐absorber solar‐cell architecture of low‐bandgap Sb2Se3 and high‐bandgap Cu2ZnSnS4 (CZTS) absorbers for broader spectrum utilization leading to higher efficiency are comprehensively analyzed. The cost‐effective chalcogenides CZTS and Sb2Se3 for high‐efficiency dual‐absorber configuration to show the possibility of high wattage at a lower cost are taken. The crucial parameters of bandgap pair and thickness are optimized for synergetic device performance and optimal utilization of the incident spectrum. By introducing an additional absorber–absorber interface, the interfacial defect at CZTS/Sb2Se3 is lowered by optimizing the band offset for the efficient functioning of a double–absorber device. The proposed device has straightforward NiO/CZTS/Sb2Se3/AZO architecture suitable for low‐cost fabrication with high efficiency of 30.9%.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3