Affiliation:
1. Department of Materials Science and Engineering Meijo University 1‐501, Shiogamaguchi Tempaku‐ku Nagoya 468‐8502 Japan
2. Life Solution Engineering Division 1 Toyoda Gosei Co., Ltd. Inazawa 490‐1312 Japan
Abstract
Herein, hole generation in a 60 nm thick polarization‐doped AlxGa1–xN (x = 0.9–0.35)‐graded layer with some Mg doping (5 × 1018 cm−3) is demonstrated by using a 10 nm thick heavily (1 × 1020 cm−3) Mg‐doped Al0.35Ga0.65N contact layer. First, light emission from a deep‐ultraviolet light‐emitting diode is observed with the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer, indicating a vertical hole transport from the Al0.35Ga0.65N contact layer to the active region through the polarization‐doped AlGaN‐graded layer. Second, hole concentration, mobility, and resistivity values of the AlxGa1–xN (x = 0.9–0.35)‐graded layer and the Al0.35Ga0.65N contact layer are evaluated by Hall effect measurement. A hole concentration of 1.8 × 1018 cm−3 is clearly observed by removing the AlGaN contact layer (not underneath of electrodes) to minimize a parallel conduction. The hole concentration shows a very weak temperature dependence from room temperature down to 150 K, suggesting that the holes are generated by polarization doping. Hole generation in the fully strained AlxGa1–xN (x = 0.9–0.35)‐graded layer is directly evaluated by Hall effect measurement with the AlGaN contact layer just underneath the electrodes.
Funder
Japan Society for the Promotion of Science
Ministry of the Environment, Government of Japan