MnNbS/Polyaniline Composite‐Based Electrode Material for High‐Performance Energy Storage Hybrid Supercapacitor Device

Author:

Khan Rizwan1,Afzal Amir Muhammad2ORCID,Hussain Zahid2,Iqbal Muhammad Waqas2,Imran Muhammad2,Hamza Waris Muhammad2,Azhar Mumtaz Muhammad2,Usman Muhammad3,Wabaidur Saikh Mohammad4,Al-Ammar Essam A.5,Mumtaz Sohail6

Affiliation:

1. Department of Electrical Engineering Kwangwoon University Seoul 01897 South Korea

2. Department of Physics Riphah International University Campus Lahore 54000 Pakistan

3. Department of Bioinformatics, School of Medical Informatics and Engineering Xuzhou Medical University Xuzhou 221004 P. R. China

4. Chemistry Department, College of Science King Saud University Riyadh 11451 Saudi Arabia

5. Department of Electrical Engineering College of Engineering King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia

6. Department of Electrical and Biological Physics Kwangwoon University Seoul South Korea

Abstract

Hybrid supercapacitor or supercapattery devices have gained significant attention for their impressive power (Pd) and energy densities (Ed), as well as their exceptional cyclic stability compared to traditional storage devices. In this study, manganese niobium sulfide (MnNbS) is synthesized using a hydrothermal method. To enhance the electrochemical performance of MnNbS, polyaniline (PANI) is blended at varying mass ratios. Initially, the electrochemical properties of MnNbS/PANI are evaluated using a three‐electrode configuration, consisting of working, counter, and reference electrodes. At a current density of 2 A g−1, MnNbS/PANI exhibits an improved specific capacity () of 1366 C g−1. Subsequently, to develop a supercapattery energy storage device, a two‐electrode system is constructed. This setup offers enhanced performance and flexibility, making it an ideal choice for high‐performance supercapacitors. Activated carbon (AC) and MnNbS/PANI are employed as the negative and positive electrodes, respectively, in the two‐electrode system. Notably, the device demonstrates outstanding energy density (Ed) of 26.2 Wh kg−1, power density (Pd) of 2072 W kg−1, and specific capacity of 118 C g−1. Furthermore, durability tests involving 1000 charge–discharge cycles reveal a capacity retention of 79%. This study suggests that MnNbS/PANI (at a weight ratio of 80/20%) holds promise as an electrode material for supercapattery applications.

Funder

King Saud University

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3