Nanopatterned SiNx Broadband Antireflection Coating for Planar Silicon Solar Cells

Author:

Cordaro Andrea12ORCID,Tabernig Stefan Wil13ORCID,Pollard Michael3,Yi Chuqi3,Alarcon-Llado Esther1,Hoex Bram3,Polman Albert1

Affiliation:

1. Center for Nanophotonics NWO-Institute AMOLF Science Park 104 1098 XG Amsterdam The Netherlands

2. Van der Waals-Zeeman Institute Institute of Physics University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands

3. School of Photovoltaic and Renewable Energy Engineering University of New South Wales 2052 Sydney Australia

Abstract

Crystalline Si solar cells based on thin wafers, with thicknesses in the range of 5–50 μm, can find applications in a wide range of markets where flexibility and bendability are important. For these cells, avoiding standard macroscopic texture is desirable to increase structural integrity. Herein, a nanopatterned SiN x antireflection (AR) coating that consists of 174 nm‐radius and 118 nm‐high SiN x nanodisks arranged in a square lattice on a thin (59 nm) SiN x layer is introduced. This geometry combines Fabry–Pérot AR and forward scattering by a resonant Mie mode to achieve high transmission into the Si absorber over a broad spectral band. The nanostructured coating is patterned on a commercial interdigitated‐back‐contact (IBC) Si solar cell, experimentally demonstrating a short‐circuit current density (J sc) of 36.9 mA cm−2, 2.3 mA cm−2 higher than for a single‐layer AR coated cell, and an efficiency of 16.3% at a thickness of around 100 μm. It is shown that light incoupling efficiency is comparable to that of pyramidal texturing, while the absorption in the infrared is lower, due to less‐effective light trapping. Overall, nanopatterned SiN x broadband AR coatings are an appealing option for improving light management in ultrathin solar cells and other optoelectronic devices.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3