Photo‐Induced Evolution of Randomly Rough Surfaces of Amorphous Chalcogenide Films

Author:

Kaganovskii Yuri1ORCID,Freilikher Valentin1,Rosenbluh Michael1

Affiliation:

1. Department of Physics Bar-Ilan University Ramat-Ran 52900 Israel

Abstract

Photoinduced (PI) evolution of statistically rough surfaces of amorphous chalcogenide films As20Se80 at room temperature has been studied by measuring the angular dependence of the intensity of light scattered from a surface illuminated by CW laser (λ = 660 nm). The interpretation of the scattering data based on the resonant scattering theory enables to confirm unequivocally the diffusion mechanism of PI mass transfer. It is detected that the change of the amplitude of a spatial harmonic in the roughness spectra strongly depends on its period ∧ . During illumination, the amplitude increases at ∧ > ∧*, whereas harmonics with ∧ < ∧* decreases by ∧*, which corresponds to zero evolution rate, is found to be 6.7 μm. In accordance with our theoretical prediction, both growth and decrease are exponential with the rates depending on ∧. As the result, the roughness with initial rms height of 50–70 nm transforms into quasiperiodic surface grating with the average amplitude of about 400 nm and average period close to 15 μm. From the kinetics of time variation of the scattered intensity, the PI diffusion coefficient D is calculated. When the laser intensity changes from 5.6 to 14 W cm−2, D is found in the range 1 × 10−13–3.4 × 10−13 m2 s−1.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3