Theoretical Modeling of Surface Plasmon Resonance Biosensor Using Titanium Dioxide and Graphene Nanomaterial for Refractive Index Sensing

Author:

Yadav Annu1,Lohia Pooja1,Singh Sachin2,Yadav Sapana3,Mishra Adarsh Chandra3,Dwivedi Dilip Kumar3ORCID

Affiliation:

1. Department of Electronic and Communication Engineering Madan Mohan Malaviya University of Technology Gorakhpur 273010 India

2. Institute of Advanced Materials, IAAM Gammalkilsvägen 59053 Ulrika Sweden

3. Photonics and Photovoltaic Research Lab Department of Physics and Material Science Madan Mohan Malaviya University of Technology Gorakhpur 273010 India

Abstract

The most popular method to determine the sensitivity of surface plasmon resonance (SPR) sensors in the last couple of decades has been angular interrogation. The silver layer (Ag), a 2D layer of TiO2, and dielectric material layer such as silicon (Si) with heterostructure material graphene are all stacked in the proposed SPR sensor. To increase sensitivity of SPR sensor in the visible area, the device structure focuses on the Kretschmann configuration, by which a TiO2 sheet is sandwiched between silver and silicon sheets. The proposed device structure makes use of the operational wavelength of 633 nm. The numerical simulation has been performed in MATLAB software in this device structure. The simulation results show that an analyte of refractive indices ranges 1.345–1.350. A single layer of silicon 3 nm and TiO2 10 nm makes up the suggested SPR configuration, which increases the sensitivity to 281° RIU−1. Herein, it has also been computed the figure of merit, detection accuracy, limit of detection, full width at half maximum, and transverse magnetic electric field intensity. The biomedical and chemical fields have benefited from the proposed SPR sensor structure design.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3