Understanding the Thermodynamics of Si and Ge Concentration Variation in SiGeSn Nanowires

Author:

Zhang Xiaoyang12,Zhu Xianjun2,Zhao Xueping3,Zhang Hai1ORCID,Chen Wanghua2ORCID

Affiliation:

1. College of Sciences Inner Mongolia University of Technology Hohhot 010051 China

2. School of Physical Science and Technology Ningbo University Ningbo 315211 China

3. College of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China

Abstract

This work presents a comprehensive investigation into the synthesis, characterization, and thermal stability of SiGeSn nanowires (NWs) leveraging the vapor–liquid–solid growth mechanism. Utilizing plasma‐enhanced chemical vapor deposition with Sn as the catalyst and a combination of SiH4 and GeH4 as precursors, this research synthesizes tapered SiGeSn NWs of high crystalline quality. Utilizing high‐angle annular dark‐field scanning transmission electron microscopy and energy‐dispersive X‐ray spectroscopy, the study confirms the inhomogeneous distribution of Si, Ge, and Sn along the NWs’ growth axis. It is observed that the concentrations of Si and Ge are significantly influenced by the NW diameter, a phenomenon attributed to the Gibbs–Thomson effect. A straightforward mathematical model is developed. This model examines the impact of the catalyst's shape and the presence of Sn on the NW surface on the internal Sn concentration and its variation along the NWs’ growth axis. Additionally, the study investigates how thermal annealing at temperatures of 300 and 600 °C induces compositional changes within the NWs. These changes are markedly influenced by the heterogeneous distribution of Si, Ge, and Sn elements, leading to varying levels of compositional alterations in different segments of the NWs postannealing at distinct temperatures.

Funder

National Natural Science Foundation of China

Government of Inner Mongolia Autonomous Region

Natural Science Foundation of Ningbo

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3