Influence of Temperature, Light, and H2O2 Concentration on Microbial Spore Inactivation: In‐Situ Raman Spectroscopy Combined with Optical Trapping

Author:

Bertz Morten1,Schöning Michael J.23ORCID,Molinnus Denise2,Homma Takayuki14

Affiliation:

1. Research Organization for Nano & Life Innovation Waseda University 513 Waseda‐Tsurumakichou Shinjuku‐ku 162‐0041 Tokyo Japan

2. Institute of Nano‐, and Biotechnologies (INB) Aachen University of Applied Sciences Campus Jülich Heinrich‐Mußmann‐Str.1 52428 Jülich Germany

3. Institute of Biological Information Processing (IBI‐3) Research Center Jülich GmbH 52428 Jülich Germany

4. Department of Applied Chemistry Waseda University 3‐4‐1 Okubo, Shinjuku‐ku Tokyo 169‐8555 Japan

Abstract

To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H2O2) concentration (up to 30% in aqueous solution) on microbial spore inactivation is evaluated by in‐situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H2O2 concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H2O2 leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration‐dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H2O2 into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate‐limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H2O2‐based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3