Synergic Effects of Chemical Reduction and Nitrogen Doping on the Structural and Electrical Properties of N‐ZnO/N‐rGO Nanostructures

Author:

Mary Manoj Alisha1ORCID,Madeshwaran Kavithanjali1,V Mahalakshmi1,Vasu Kuraganti1,M Usha Rani1,G Boopalan2,Rose Viannie Leema1ORCID

Affiliation:

1. Department of Physics School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu 632014 India

2. Department of Communication Engineering School of Electronics Engineering Vellore Institute of Technology Vellore Tamil Nadu 632014 India

Abstract

In this study, the synthesis, followed by a detailed evaluation of the structural, optical, and electrical properties of the N‐ZnO/N‐rGO nanocomposite prepared using a one‐step low‐temperature hydrothermal process, is reported. By employing N, N‐dimethylformamide (DMF) as the reducing agent and urea as the nitrogen precursor, simultaneous reduction and nitrogen doping are achieved in the nanocomposite. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and Raman measurements are used for the structural evaluation. The formation of composites is verified using the ZnC/ZnOC bonds in the XPS. The nitrogen doping in the nanocomposites varies from 0.8% to 1.8%. The major nitrogen moieties observed here include pyrrolic N, pyridinic N, and graphitic N. The electrical response is measured using current–voltage characteristics, and enhanced conductivity was observed in the sample with the highest percentage of pyrrolic N. This is attributed to the superior electron transport mechanism of pyrrolic N in the graphene structure. The current response is found to increase from 2 to 10 μA from ZnO/rGO to N‐ZnO/N‐rGO nanocomposite. The integration of N‐rGO support with extensively doped pyrrolic end groups for the N‐ZnO nanoparticles has been found to improve the conduction mechanism and is hence promising for many applications.

Funder

University Grants Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3