QCM‐D Study of the Formation of Solid‐Supported Artificial Lipid Membranes: State‐of‐the‐Art, Recent Advances, and Perspectives

Author:

Bar Laure1,Villanueva Martín Eduardo1,Neupane Shova2,Cordoyiannis George3,Losada-Pérez Patricia1ORCID

Affiliation:

1. Experimental Soft Matter and Thermal Physics (EST) Group Department of Physics Université Libre de Bruxelles Boulevard du Triomphe CP223 1050 Brussels Belgium

2. Department of Mechanical and Electrical Engineering Centre for Industrial Electronics University of Southern Denmark Alsion 2 6400 Sønderborg Denmark

3. Condensed Matter Physics Department Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia

Abstract

Solid‐supported lipid bilayers (SLBs) are excellent platforms for studying the biophysical properties of cell membranes. Among the existing approaches used to form SLBs, vesicle fusion and rupture onto solid supports are most commonly employed owing to their straightforward procedure. The current understanding of the mechanisms behind this approach has greatly benefited from the use of surface‐sensitive techniques, especially quartz crystal microbalance with dissipation monitoring (QCM‐D) in combination with other analytical techniques, such as atomic force microscopy (AFM) or localized surface plasmon resonance (LSPR). Herein, an overview of the pathways of vesicle adsorption and rupture under various experimental conditions is provided. Examples including recent findings of how the variation of the properties of lipid vesicles (size, charge), aqueous buffer (pH, ionic strength, osmotic pressure), and solid support (surface energy) affect the pathway mechanism of adsorption and rupture are provided. Recent reports on poorly understood properties such as surface roughness and topography are provided, together with the need for further studies relevant to biomimetic and sensing purposes.

Funder

Fonds De La Recherche Scientifique - FNRS

American Roentgen Ray Society

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3