Elucidating the role of carrier proteins in cytokine stabilization within double emulsion‐based polymeric nanoparticles

Author:

Rhodes Emily R.1,Day Nicole B.1,Aldrich Emma C.1,Wyatt Shields C.12ORCID,Sprenger Kayla G.12ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado USA

2. Biomedical Engineering Program University of Colorado Boulder Boulder Colorado USA

Abstract

AbstractPolymeric micro‐ and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid–liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine‐delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed. We utilized an integrated computational and experimental approach for studying the governing mechanisms by which interleukin‐12 (IL‐12), a clinically relevant cytokine, is protected from denaturation by albumin, a common stabilizing protein, at an organic‐aqueous solvent interface formed during double emulsification. We investigated protein–protein interactions between human (h)IL‐12 and albumin and simulated these components in pure water, dichloromethane (DCM), and along a water/DCM interface to replicate the solvent regimes formed during double emulsification. We observed that (i) hIL‐12 experiences increased structural deviations near the water/DCM interface, and (ii) hIL‐12 structural deviations are reduced in the presence of albumin. Experimentally, we found that hIL‐12 bioactivity is retained when released from particles in which albumin is added to the aqueous phase in molar excess to hIL‐12 and sufficient time is allowed for albumin‐hIL‐12 binding. Findings from this work have implications in establishing design principles to enhance the stability of cytokines and other unstable proteins in particles formed by double emulsification for improved stability and therapeutic efficacy.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3