Human adipose‐derived multipotent stromal cells enriched with IL‐10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift

Author:

Zhang Yuxin12,Wang Wei12,Chen Liang2,Wang Heng2,Dong Dong2,Zhu Jingjing2,Guo Yu2,Zhou Yiqun2,Liu Tianyi12ORCID,Fu Wei3ORCID

Affiliation:

1. Shanghai Key Laboratory of Clinical Geriatric Medicine Huadong Hospital Shanghai China

2. Department of Plastic Surgery, Huadong Hospital, School of Medicine Fudan University Shanghai China

3. Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China

Abstract

AbstractDiabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro‐inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin‐10 (IL‐10) chemically modified mRNA (modRNA)‐enriched human adipose‐derived multipotent stromal cells (hADSCs) in a well‐established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1‐methylpseudouridine‐5′‐triphosphate (m1Ψ) by substituting uridine‐5‐triphosphate. In vitro experiments demonstrated that IL‐10 modRNA‐transfected hADSCs effectively modulated macrophage polarization towards an anti‐inflammatory phenotype. In vivo experiments with a well‐established murine model demonstrated that transplantation of hADSCsmodIL‐10 on postoperative day 5 (POD5) significantly improved wound healing outcomes, including accelerated wound closure, enhanced re‐epithelialization, promoted M2 polarization, improved collagen deposition, and increased neovascularization. This study concludes that IL‐10 modRNA‐enriched hADSCs offer a promising therapeutic approach for diabetic wound healing, with the timing of IL‐10 administration playing a crucial role in its effectiveness. These cells modulate macrophage polarization and promote tissue repair, demonstrating their potential for improving the management of diabetic wounds.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3