Forecasting wind power using Optimized Recurrent Neural Network strategy with time‐series data

Author:

Kumar Krishan1ORCID,Prabhakar Priti2,Verma Avnesh3

Affiliation:

1. Department of Electrical Engineering Guru Jambheshwar University of Science & Technology Hisar Haryana India

2. Electrical Engineering Guru Jambheshwar University of Science & Technology Hisar Haryana India

3. Instrumentation Engineering, Department of Instrumentation Engineering Kurukshetra University Kurukshetra Haryana India

Abstract

AbstractFuel prices are rising, bringing attention to the utilization of alternative energy sources (RES). Even though load forecasting is more accurate at making predictions than wind power forecasting is. To address the operational challenges with the supply of electricity, wind energy forecasts remain essential. A certain kind of technology has recently been applied to forecast wind energy. On wind farms, a variety of wind power forecasting methods have been developed and used. The main idea underlying recurrent networks is parameter sharing across the multiple layers and neurons, which results in cycles in the network's graph sequence. Recurrent networks are designed to process sequential input. A novel hybrid optimization‐based RNN model for wind power forecasting is proposed in this research. Using the SpCro algorithm, a proposed optimization method, the RNN's weights are adjusted. The Crow Search Optimization (CSA) algorithm and the Sparrow search algorithm are combined to form the SpCro Algorithm (SSA). The suggested Algorithm was developed using the crow's memory traits and the sparrow's detecting traits. The proposed system is simulated in MATLAB, and the usefulness of the suggested approach is verified by comparison with other widely used approaches, such as CNN and DNN, in terms of error metrics. Accordingly, the MAE of the proposed method is 45%, 10.02%, 10.04%, 33.58%, 94.81%, and 10.01% higher than RNN, SOA+RNN, CSO+RNN, SSA+DELM, CFU‐COA, and GWO+RNN method.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3