High glucose leads to redistribution of the proteasomal system

Author:

Grune Tilman12345ORCID,Schnell Vanessa1,Jung Tobias13

Affiliation:

1. Department of Molecular Toxicology German Institute of Human Nutrition Potsdam‐Rehbrücke Nuthetal Germany

2. German Center for Diabetes Research (DZD) München‐Neuherberg Germany

3. German Center for Cardiovascular Research (DZHK) Berlin Germany

4. Institute of Nutrition, University of Potsdam Nuthetal Germany

5. Department of Physiological Chemistry, Faculty of Chemistry University of Vienna Vienna Austria

Abstract

AbstractThe impact of high glucose on the cellular redox state, causing both induction of antioxidative systems and also enhanced protein oxidation is discussed for a long time. It is established that elevated glucose levels are disrupting the cellular proteostasis and influencing the proteasomal system. However, it is still unresolved whether this is due to a reaction of the cellular proteasomal system towards the high glucose or whether this is a secondary reaction to inflammatory stimuli. Therefore, we used a dermal fibroblast cell line exposed to high glucose in order to reveal whether a response of the proteasomal system takes place. We investigated the α4 and the inducible iβ5 subunits of the 20S proteasome, as well as the Rpn1‐subunit of the 19S proteasomal regulator complex, measured activity of the 20S, 20S1, and 26S proteasome and detected as well changes in expression as a redistribution into the nucleus. Interestingly, while the activity of the proteasomal forms rather decreased under high glucose treatment; higher expression levels of components of the proteasomal system and higher concentrations of protein‐bound 3‐nitrotyrosine and Nrf2 (nuclear factor [erythroid‐derived 2]‐like 2) were detected. However, no change in the cytosol‐nucleus distribution could be detected for most of the quantified parameters. We concluded that high glucose alone, without additional inflammatory stimuli, provokes a regulatory response on the ubiquitin‐proteasomal system.

Publisher

Wiley

Subject

Clinical Biochemistry,Molecular Medicine,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3