Time‐varying changes in median nerve deformation and position in response to quantified pinch and grip forces

Author:

Racine Gabrielle1,Holmes Michael W. R.2,Kociolek Aaron M.1ORCID

Affiliation:

1. School of Physical and Health Education Nipissing University North Bay Ontario Canada

2. Department of Kinesiology Brock University St. Catharines Ontario Canada

Abstract

AbstractThe ability of the median nerve (MN) to adapt in response to altered carpal tunnel conditions is important to mitigate compressive stress on the nerve. We assessed changes in MN deformation and position throughout the entire time course of hand force exertions. Fourteen right‐handed participants ramped up force from 0% to 50% of maximal voluntary force (MVF) before ramping force back down in three different hand force exertion tasks (pulp pinch, chuck pinch, power grip). Pinch and grip forces were measured with a digital dynamometer, which were time synchronized with transverse carpal tunnel images obtained via ultrasound. Ultrasound images were extracted in 10% increments between 0% and 50% MVF while ramping force up (loading phase) and down (unloading phase). MN deformation and position relative to the flexor digitorum superficialis tendon of the long finger were assessed in concert. During loading, the nerve became more circular while displacing dorsally and ulnarly. These changes primarily occurred at the beginning of the hand force exertions while ramping force up from 0% to 20%, with very little change between 20% and 50% MVF. Interestingly, deformation and position changes during loading were not completely reversed during unloading while ramping force down. These findings indicate an initial reorganization of carpal tunnel structures. Mirrored changes in nerve deformation and position may also reflect strain‐related characteristics of adjoining subsynovial connective tissue. Regardless, time‐varying changes in nerve deformation and position appear to be an important accommodative mechanism in the healthy carpal tunnel in response to gripping and pinching tasks.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3