Affiliation:
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering Hebei University of Technology Tianjin China
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering Hebei University of Technology Tianjin China
Abstract
AbstractTo address the issue of diagnosing hard and soft faults in active power factor correction (APFC) power supply, this study analyzes failure modes resulting from aging and malfunction of various sensitive components. The power fault waveform patterns are initially analyzed based on the circuit's THD, current ripple value, and RMS value. The inductor current signals in different fault modes are then utilized to extract and construct time–frequency fusion fault features of the APFC power supply. Finally, these feature quantities are downscaled and optimized using the RF algorithm. The SOA‐KELM model of the APFC converter is proposed, and the feature vectors under different fault modes are used to classify and diagnose faults, achieving hard and soft fault detection of the converter. The experiments show that the method achieves 100% accuracy for hard fault diagnosis and 96.36% accuracy for soft fault diagnosis of the converter, demonstrating high diagnostic accuracy.
Funder
Natural Science Foundation of Hebei Province
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献