Study on the operation strategies and carbon emission of heating systems in the context of building energy conservation

Author:

Teng Jiaying1ORCID,Yin Hang1,Wang Pengying2

Affiliation:

1. School of Economics and Management Jilin Jianzhu University Changchun China

2. College of Engineering and Technology Jilin Agricultural University Changchun China

Abstract

AbstractCoal‐fired thermal power must be flexible to enable the grid absorption of inconsistent photovoltaic (PV) and wind power. Combined heat and power (CHP) coal‐fired plants are the primary source for district heating systems. This paper uses a 330 MW subcritical CHP unit as an example to carry out the study. With the promotion of building energy efficiency, when the thermal index is reduced to below 20 W/m2, the low‐load operation of CHP can meet the wind power and PV feed‐in demand and guarantee residential heating without the need for flexibility modification. Meanwhile, more renewable energy generation can reduce carbon emissions from the power supply, further contributing to reducing carbon emissions from buildings. The impacts of different envelope parameters and supplementary heat sources on building carbon emissions are also studied. The conclusion shows that the degree of their impact on carbon emissions ranks as ESMs (energy supply modes) > Factor D (infiltration N50) > Factor A (external wall heat transfer coefficient) > Factor C (window heat transfer coefficient) > Factor B (roof heat transfer coefficient). When the building's heating energy consumption gradually decreases, the distributed heat pump unit can replace the coal‐fired boiler to supply the peak heat load demand. In the future, China's district heating systems can be gradually changed from the current CHP and coal‐fired boilers to CHP and distributed heat pumps.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3