Understanding the Dominant Physics Mechanisms on the p‐i‐n Perovskite Solar Cells Fabricated by Scalable Slot‐Die Coating Process in Ambient Air

Author:

Glowienka Damian12,Huang Shih-Han13,Lee Pei-Huan1,Tsai Feng-Yu1,Su Wei-Fang13ORCID

Affiliation:

1. Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan

2. Faculty of Applied Physics and Mathematics Gdańsk University of Technology Narutowicza 11/12 Gdańsk 80-233 Poland

3. Department of Materials Engineering MingChi University of Technology New Taipei City 243303 Taiwan

Abstract

Perovskite solar cells (PSC) are emerging technologies that have shown continuous improvement in power conversion efficiency (PCE) and stability. However, a very important aspect that has been seldom considered is the reproducibility of PCE of PSC devices. It is possible to achieve PCE from 10.21% to 17.05% using scalable slot‐die‐coating technique. However, a spatial distribution of performance is clearly observed for device samples on a 4 × 4 cm substrate. The relatively low PCE is mainly coming from the losses of electrical mechanism. To have in‐depth understanding of the losses, the dominant loss analysis techniques including numerical simulations are used to explore the mechanism. In the results, it is indicated that a part of efficiency decrease is due to the increase of bulk defect density which linearly changes with the quality of the perovskite layer and related to recombination process. However, extremely high‐charge‐carrier transportation losses are found at the HTL/perovskite interface that are related to the Fermi‐level pinning mechanism for low‐efficiency device. The result of physics insight of perovskite solar cells leads to a strategy, where chemical passivation technique is used to achieve the PCE from 13.81% to 18.07% for the batch of devices with good reproducibility.

Funder

National Science Centre

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3