Dimensional Engineering in Efficient and Stable Inverted Perovskite Solar Cells

Author:

Zhu Qing1,Yu Yue1ORCID,Liu Xinxing1,He Dongmei1,Shai Xuxia2,Feng Jing1,Yi Jianhong1,Chen Jiangzhao1ORCID

Affiliation:

1. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

2. Faculty of Science Institute of Physical and Engineering Science Kunming University of Science and Technology Kunming 650500 China

Abstract

Perovskite solar cells (PSCs) have attracted much attention in the field of photovoltaics, due to their high power conversion efficiency (PCE) and low cost. In recent years, inverted PSCs have achieved significant advancements in PCE and operational stability. Among the strategies for optimizing PCE and lifespan of inverted PSCs, dimensional engineering plays a critical role and garners increasing attention due to its versatile functions of passivating defects, releasing residual tensile stress, strengthening structural stability, ameliorating carrier transport and extraction, and so on. Considering the importance of dimensional engineering, a comprehensive and deep understanding of 2D perovskites and 2D/3D heterojunction is definitely necessary. In this review, first, the progress of low‐dimensional perovskite light‐harvesting materials in inverted PSCs is summarized. Subsequently, the advances in constructing 2D/3D perovskite heterojunctions, including 2D/3D bulk heterojunction within perovskite materials, 2D/3D interfacial heterojunction at the interface between perovskite film and carrier transport layer, and bottom‐up 2D/3D perovskite heterojunction are discussed. The simultaneous construction of 2D/3D heterojunction at dual interfaces is highlighted. Finally, the legitimate outlook on the further development of dimensional engineering is proposed to advance the commercialization of inverted photovoltaic technology.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3