Performance of Hydride Vapor Phase Epitaxy‐Grown GaInP Photovoltaics with Double‐Sided Al‐Containing Passivation Layers Under Air Mass 1.5 Global Solar Irradiation and Low‐Intensity Indoor Light Irradiation

Author:

Shoji Yasushi1ORCID,Oshima Ryuji1,Makita Kikuo1,Ubukata Akinori2,Koseki Shuuichi3,Sugaya Takeyoshi1

Affiliation:

1. Global Zero Emission Research Center National Institute of Advanced Industrial Science and Technology (AIST) 1‐1‐1 Umezono Tsukuba 305‐8568 Ibaraki Japan

2. Innovation Unit Taiyo Nippon Sanso Corporation 10 Okubo Tsukuba 300‐2611 Ibaraki Japan

3. Innovation Unit, Compound Semiconductor Equipment Div. Taiyo Nippon Sanso Corporation 5‐30‐9 Shiba, Minato‐ku Tokyo 108‐0014 Japan

Abstract

High‐performance III–V photovoltaic devices have the potential for various applications; however, their high production cost represents a challenge for market expansion. Hydride vapor phase epitaxy (HVPE) is a fabrication technology that can reduce the epitaxial growth cost of III–V compound semiconductors. This study demonstrates the performances of HVPE‐grown GaInP photovoltaic devices for solar and indoor photovoltaic applications. Herein, HVPE‐grown GaInP photovoltaic devices with AlInP frontside and AlGaInP backside passivation layers are fabricated for the first time. The developed GaInP photovoltaic device measured under air mass 1.5 global solar spectrum illumination achieves an independently certified power conversion efficiency of 17.3%, which is a new record efficiency among HVPE‐grown GaInP single‐junction solar cells. Furthermore, the GaInP photovoltaic device grown using HVPE exhibits a high power conversion efficiency (34.7–37.1%) under an illumination of 500–2000 lux, respectively, emitted by a white light‐emitting diode. These results demonstrate that HVPE‐grown GaInP photovoltaic devices can be used in low‐intensity indoor light energy harvesting systems.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3