Affiliation:
1. College of Science Nanjing Forestry University Nanjing 210037 China
Abstract
Artificial photocatalysis is beneficial to carbon neutrality, renewable resources generation, and sustainable society development. Due to the unique layered structure, abundant surface functional groups, and tunable electronic properties, MXene is emerging as a promising contender to improve the comprehensive performance of photocatalysts. Much progress has been made in the study of MXene‐based nanomaterials over the past years, and state‐of‐the‐art advances in the rational design, controllable synthesis, characterization techniques, and diverse applications of MXene‐based photocatalysts have been reviewed. However, the roles and perspectives of MXenes in photocatalysis have been less summarized. Based on the analysis of the physical/chemical properties of MXenes and the latest research progress, herein, the multiple roles of MXenes are discussed in promoting photocatalysis, including carrier for active site anchoring, light‐transmitting media, mass transfer medium, cocatalyst, and heat conductor. In addition, the current status and challenges of MXenes in photocatalysis are summarized, and the future directions as well as the bottleneck of development that need to be broken through for MXenes in photocatalysis are also proposed. This review provides a clear and in‐depth understanding of the physical/chemical properties of MXene‐based photocatalysts and their contributions to photocatalysis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献