Lithography‐Free Method to Synthesize Quasiperiodic Silicon Inverted‐Pyramid Arrays: A Broadband Light Trapper for High‐Efficiency Thin Silicon Solar Cells

Author:

Kumar Anil1,Rani Divya1,Saini Anjali23,Joshi Neeraj1,Varma Ravi Kumar1,Dutta Mrinal4,Samanta Arup15ORCID

Affiliation:

1. Quantum/Nano‐Science and Technology Lab Department of Physics Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India

2. Photovoltaic Metrology Section Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory New Delhi 110012 India

3. Academy of Scientific and Innovative Research (AcSIR) New Delhi 110012 India

4. National Institute of Solar Energy Gurgaon 122003 Haryana India

5. Centre for Nanotechnology Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India

Abstract

Thin silicon solar cells can be a low‐cost effective photo‐conversion device, if the device can efficiently absorb the solar spectrum. Herein, a new lithography‐free technique is developed for the fabrication of quasiperiodic silicon inverted‐pyramids arrays (SiIPAs), which show a high‐light‐trapping phenomenon in the ultraviolet–visible—near‐infrared (300–2000 nm). Fabricated SiIPA samples show a significant reduction of reflectance (3%) in the silicon absorption band (300–1000 nm). A unique additional absorption of 33–44% compared to the planar silicon is observed in the sub‐bandgap region of silicon (1100–2000 nm) for these samples. Photocurrent response measurement confirms the generation of additional electron–hole pairs in the sub‐bandgap region of silicon for the SiIPA samples in comparison with planar sample. In these results, the effect of field confinement and the creation of optical resonance modes within these structures, qualitatively supported by numerical simulation, are signified. The estimated short‐circuit current density using the experimental absorption spectrum of SiIPAs is 55.46 mA cm−2, which is far higher than the Lambertian limit of ≈43 mA cm−2. The theoretical efficiency of the solar cell can be achieved up to 35.22%, which surpasses the Shockley–Queisser limit of 33.7%.

Funder

Science and Engineering Research Board

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3