Unraveling Its Intrinsic Role of CH3NH3Cl Doping for Efficient Enhancement of Perovskite Solar Cells from Fine Insight by Ultrafast Charge‐Transfer Dynamics

Author:

Cheng Jiahao12,Wang Lei12,Zhou Peng3,Liu Dezheng12,Chen Meihua12,Liang Ying12,Li Wangnan12ORCID,Hu Run4,Liang Guijie12

Affiliation:

1. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices Hubei University of Arts and Science Xiangyang Hubei 441053 P. R. China

2. Hubei Longzhong Laboratory Xiangyang Hubei 441000 P. R. China

3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

4. State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China

Abstract

The addition of CH3NH3Cl (MACl) in perovskite precursor has become one of the most effective strategies for enhancing the photovoltaic performance of perovskite solar cells (PSCs). To further determine its relevant intrinsic modification mechanism, a series of PSCs with variant MACl contents are prepared. Apart from the analysis of crystal morphology and defect states, molecular‐level photophysical processes related closely to photovoltaic performance are systematically investigated by transient absorption (TA) and time‐resolved photoluminescence spectroscopy. Promisingly, by a diffusion‐coupled charge‐transport model via global fitting of TA spectra, the kinetic of perovskite/SnO2 heterojunction films is resolved into four distinct photophysical processes. Among the processes, as the MACl concentrations increase, the charge carriers’ bulk diffusion in perovskite and interfacial transfer in perovskite/SnO2 heterojunction accelerate simultaneously, while the back charge recombination from SnO2 to perovskite decelerates, which correlates closely with larger grains featuring fewer grain boundaries and defect sites of perovskite induced by MACl doping. The aforementioned modified charge dynamics constitute the origin of the excellent optoelectronic properties in the resultant device, which exhibits an optimal conversion efficiency of 23.6%.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3