Affiliation:
1. National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
Abstract
Solar‐driven interfacial evaporation technology offers a promising method for sustainable freshwater production. Hydrogels have emerged as promising materials for interfacial evaporation, as they possess the capability to activate water molecules and lower the enthalpy required for evaporation. However, monolithic hydrogels fail to meet the diverse water content requirements in different evaporation regions. Herein, a thermoresponsive hydrogel (CSAm) capable of spontaneously forming Janus structures under sunlight illumination is designed. CSAm exhibits reversible solar‐induced wetting transition, enabling efficient evaporation with asymmetric wetting properties during the day and self‐cleaning of salts with hydrophilic wetting properties during the night. This transition of Janus structures allows for the regulation of water content distribution within the evaporator, meeting the diverse water content requirements of different evaporation regions. CSAm is composed of a thermoresponsive polymer, poly(N,N‐diethylacrylamide), and a hydrophilic polymer, polyacrylamide, cross‐linked to form a scaffold structure. The uniform dispersion of photothermal material (CuS) within the gel scaffold is achieved using lignosulfonates. This study investigates the Janus structure characteristics, photo/thermoresponsive properties, salt resistance, and evaporation performance. Under 1 sun illumination (1 kW m−2), CSAm exhibits a high evaporation rate of 2.67 kg m−2 h−1 and demonstrates long‐term stability in seawater desalination.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Hebei Province
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献