Space‐ and Post‐Flight Characterizations of Perovskite and Organic Solar Cells

Author:

Reb Lennart K.1,Böhmer Michael2,Predeschly Benjamin1,Grott Sebastian1,Weindl Christian L.1,Ivandekic Goran I.1,Guo Renjun1,Spanier Lukas V.1,Schwartzkopf Matthias3,Chumakov Andrei3,Dreißigacker Christoph4,Gernhäuser Roman2,Roth Stephan V.35,Meyer Andreas4,Müller-Buschbaum Peter16ORCID

Affiliation:

1. TUM School of Natural Sciences Department of Physics, Chair for Functional Materials Technical University of Munich James-Franck-Str. 1 85748 Garching Germany

2. TUM School of Natural Sciences Department of Physics, Central Technology Laboratory Technical University of Munich James-Franck-Str. 1 85748 Garching Germany

3. Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany

4. Institut für Materialphysik im Weltraum Deutsches Zentrum für Luft- und Raumfahrt (DLR) Linder Höhe 51147 Köln Germany

5. Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden

6. Heinz Maier-Leibnitz Zentrum (MLZ) Technical University of Munich Lichtenbergstr. 1 85748 Garching Germany

Abstract

Perovskite and organic solar cells are promising for space applications for enabling higher specific powers or alternative deployment systems. However, terrestrial tests can only mimic space conditions to a certain extent. Herein, a detailed analysis of irradiation‐dependent photovoltaic parameters of perovskite and organic solar cells exposed to space conditions during a suborbital flight is presented. In orbital altitudes, perovskite and organic solar cells reach power‐conversion efficiencies of more than 13% and 6%, respectively. Based on postflight grazing‐incidence small‐angle and wide‐angle X‐ray scattering, the active layer morphology and crystalline structure of the returned space solar cells are studied and compared to those of reference solar cells that stayed in an inert atmosphere. Minor changes in the active layer morphology are induced by the sole transport, without causing significant performance loss. For the space solar cells, morphological changes are attributed to the flight experiment that includes rocket launch, spaceflight, and reentry, as well as short‐terrestrial environment exposure before and after launch. In contrast, no significant changes to the crystalline phase are observed. The notable performance during flight and high active layer stability, especially of perovskite solar cells, are promising results for further steps toward an orbital demonstration.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Deutsche Forschungsgemeinschaft

Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

China Scholarship Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3