Small‐Molecule Targeting of Defect Passivation in All‐Inorganic Carbon‐Based Perovskite Solar Cells

Author:

Ma Zhipeng12,Yuan Songyang12,Deng Jiahuan12,Wang Mengqi12,Wu Wenwen12,Tian Dehua3,Lou Zaizhu34,Li Wenzhe12ORCID,Fan Jiandong124ORCID

Affiliation:

1. Institute of New Energy Technology Department of Electronic Engineering College of Information Science and Technology Jinan University Guangzhou 510631 China

2. Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes Jinan University Guangzhou 510631 China

3. Institute of Nanophotonics Jinan University Guangzhou 511443 China

4. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

The fast‐track development in all‐inorganic perovskite photovoltaics for high efficiency are still facing the defect issues including vacancy, undercoordinated ions, and dislocation at the surface/interface of perovskite materials. Herein, three kinds of small‐molecules difluorobenzylamine (DFBA) are found to act as the interfacial modification materials to stabilize and enhance the efficiency of all‐inorganic carbon perovskite CsPbI3–xBrx solar cell. The fluorine atoms with different positions in the benzene ring are demonstrated by the density‐functional theory simulations and experiments to passivate the defect at the surface/interface of perovskites, boosting the photocarrier transfer. Accordingly, the most suitable 2,6‐DFBA is used to modify the perovskite to prepare hole‐transporting materials‐free carbon‐based CsPbI3–xBrx (X = 0.3) perovskite solar cells, and the interface‐modified device yields a power conversion efficiency (PCE) of 14.6%, the open‐circuit voltage is increased to 1.14 V, and the PCE of the unpackaged device remained at 92% of the initial PCE after 1680 h of storage at 20–30% air humidity.

Funder

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3