Indium Zinc Tin Oxide Bottom Electrode‐Based Flexible Indoor Organic Photovoltaics with Remarkably High Mechanical Stability

Author:

Lee Yongju1,Biswas Swarup1,Jo Hyunil2,Lim Hyo Jun2,Heo Young-Woo23,Kim Hyeok1456ORCID

Affiliation:

1. School of Electrical and Computer Engineering Center for Smart Sensor System of Seoul (CS4) University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea

2. School of Materials Science and Engineering Kyungpook National University 80 Daehakro, Buk-gu Daegu 41566 Republic of Korea

3. KNU Advanced Material Research Institute Kyungpook National University University 80 Daehakro, Buk-gu Daegu 41566 Republic of Korea

4. Central Business SENSOMEDI 45, Yangcheong 4-gil, Ochang-eup, Cheongwon-gu Cheongju-si 28116 Republic of Korea

5. Institute of Sensor System SENSOMEDI Seoul Biohub, 117-3, Hoegi-ro, Dongdaemun-gu Seoul 02455 Republic of Korea

6. Energy Flex Sagajeong-ro 65, Dongdaemun-gu Seoul 02553 Republic of Korea

Abstract

The demand for flexible indoor organic photovoltaic cells (OPVs) is growing dramatically due to their simple and practical use as a powering aid for various electronic gadgets connected to the Internet of Things. Due to the brittleness of inorganic material‐based transparent bottom electrodes and their incompatibility with flexible organic substrates, it is extremely difficult to limit the influence of mechanical stress on the stability of flexible OPV. In this regard, choosing a mechanically stable and highly conductive transparent conducting oxide (TCO) is crucial. Therefore, flexible OPVs are fabricated onto a flexible (polyimide) substrate coated with mechanically stable TCO indium zinc tin oxide (IZTO). Sheet resistance measurements and observations of scanning electron microscope images of IZTO film after 100 000 bending repetitions (bending radius: 5 mm) confirm the ultrahigh mechanical stability of the TCO. The sheet resistance of flexible IZTO electrode layers is increased by 9%, from 17.42 to 19.12 Ω sq−1. In addition, the impact of a large number of bending repetitions on film transmittance is minimal. The OPV shows ≈69% and ≈20% of its initial power conversion efficiency value after 100 000 bending repetitions for 1000 lx LED illumination and 1 sun conditions, respectively.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference47 articles.

1. Tapered nonlinear vibration energy harvester for powering Internet of Things

2. H.An D. S.Ha Y.Yi inProc. of the 7th ACM Int. Conf. on Nanoscale Computing and Communication Association for Computing Machinery New York NY United States pp.1–6.

3. R.Morales González A.Marzo E.Freeman W.Frier O.Georgiou inProc. Fifteenth Int. Conf. Tangible Embedded and Embodied Interaction Association for Computing Machinery New York NY United States2021 pp.1–13.

4. S. A.Khan S.Lakho A.Ali A. Q.Rahimoon I. H.Memon andA.Abro inIoT Architectures Models and Platforms for Smart City Applications IGI Global Pennsylvania United States2020 pp.29–51.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3